Strong Circularly Polarized Photoluminescence from Multilayer MoS2 Through Plasma Driven Direct-Gap Transition

نویسندگان

  • Rohan Dhall
  • Kyle Seyler
  • Zhen Li
  • Darshana Wickramaratne
  • Mahesh R. Neupane
  • Ioannis Chatzakis
  • Ewa Kosmowska
  • Roger K. Lake
  • Xiaodong Xu
  • Stephen B. Cronin
چکیده

We report circularly polarized photoluminescence spectra taken from few layer MoS2 after treatment with a remotely generated oxygen plasma. Here, the oxygen plasma decouples the individual layers in MoS2 by perturbing the weak interlayer van der Waals forces without damaging the lattice structure. This decoupling causes a transition from an indirect to a direct band gap material, which causes a strong enhancement of the photoluminescence intensity. Furthermore, up to 80% circularly polarized photoluminescence is observed after plasma treatment of few layer MoS2 flakes, consistent with high spin polarization of the optically excited carriers. A strong degree of polarization continues up to room temperature, further indicating that the quality of the crystal does not suffer degradation due to the oxygen plasma exposure. Our results show that the oxygen plasma treatment not only engineers the van der Waals separation in these TMDC multilayers for enhanced PL quantum yields, but also produces high quality multilayer samples for strong circularly polarized emission, which offers the benefit of layer index as an additional degree of freedom, absent in monolayer MoS2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoluminescence in two-dimensional crystals

Two-dimensional (2D) crystals derived from layered structures exhibit a unique set of properties as elegantly demonstrated for graphene. Semiconducting 2D structures such as MoS2 sheets are attractive building blocks for novel electronic and optoelectronic devices. In this talk, I will report photoluminescence properties of group 6 transition metal dichalcogenide (TMD) 2D crystals and discuss h...

متن کامل

Plasma functionalization for cyclic transition between neutral and charged excitons in monolayer MoS2

Monolayer MoS2 (1L-MoS2) has photoluminescence (PL) properties that can greatly vary via transition between neutral and charged exciton PLs depending on carrier density. Here, for the first time, we present a chemical doping method for reversible transition between neutral and charged excitons of 1L-MoS2 using chlorine-hydrogen-based plasma functionalization. The PL of 1L-MoS2 is drastically in...

متن کامل

Direct bandgap transition in many-layer MoS2 by plasma-induced layer decoupling.

We report a robust method for engineering the optoelectronic properties of many-layer MoS2 using low-energy oxygen plasma treatment. Gas phase treatment of MoS2 with oxygen radicals generated in an upstream N2 -O2 plasma is shown to enhance the photoluminescence (PL) of many-layer, mechanically exfoliated MoS2 flakes by up to 20 times, without reducing the layer thickness of the material. A blu...

متن کامل

Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide

The layered transition metal dichalcogenides have attracted considerable interest for their unique electronic and optical properties. While the monolayer MoS2 exhibits a direct bandgap, the multilayer MoS2 is an indirect bandgap semiconductor and generally optically inactive. Here we report electric-field-induced strong electroluminescence in multilayer MoS2. We show that GaN-Al2O3-MoS2 and GaN...

متن کامل

Strain-induced indirect to direct bandgap transition in multilayer WSe2.

Transition metal dichalcogenides, such as MoS2 and WSe2, have recently gained tremendous interest for electronic and optoelectronic applications. MoS2 and WSe2 monolayers are direct bandgap and show bright photoluminescence (PL), whereas multilayers exhibit much weaker PL due to their indirect optical bandgap. This presents an obstacle for a number of device applications involving light harvest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016